Susy Extensions of Hopf maps

Francesco Toppan

CBPF (TEO), Rio de Janeiro (RJ), Brazil

Talk at New Trends in QG II, S. Paulo, 09/09/09.

Based on:
Gonzales-Rojas-FT 0812.3042 (to appear in IJMPA),
Gonzales-Kuznetsova-Nersessian-FT-Yeghikyan 0902.2682
(to appear in PRD),
Bellucci-FT-Yeghikyan 0905.3461,
Faria Carvalho-Kuznetsova-FT, in preparation, Krivonos-Nersessian-FT, in preparation.

- minimal versus non-minimal linear multiplets.
- invariant actions.
- supersymmetric extension of the Schur Iemma.
- bilinear embeddings (pre-Hopf maps)
- Non-linear supersymmetry induced by Hopf maps.
- $1 D$ susy σ-models.

1D N-Extended Supersymmetry Algebra: N odd generators $Q_{i}(i=1, \ldots, N)$ and a single even generator H (the hamiltonian). It is defined by the (anti)-commutation relations

$$
\begin{aligned}
\left\{Q_{i}, Q_{j}\right\} & =2 \delta_{i j} H, \\
{\left[Q_{i}, H\right] } & =0 .
\end{aligned}
$$

$N=5$ length-3 minimal linear supermultiplets:

fields cont.	$N=4$ decomp.	ψ_{g} connectivities	labels
$(1,8,7)$	$(0,4,4)+(1,4,3)$	$3_{5}+5_{4}$	
$(2,8,6)$	$(0,4,4)+(2,4,2)$	$2_{5}+2_{4}+4_{3}$	A
	$(1,4,3)+(1,4,3)$	$6_{4}+2_{3}$	B
$(3,8,5)$	$(0,4,4)+(3,8,5)$	$1_{5}+3_{4}+4_{2}$	A
	$(1,4,3)+(2,4,2)$	$2_{4}+5_{3}+1_{2}$	B
$(4,8,4)$	$(0,4,4)+(4,4,0)$	$4_{4}+4_{1}$	A
	$(1,4,3)+(3,4,1)$	$1_{4}+3_{3}+3_{2}+1_{1}$	B
	$(2,4,2)+(2,4,2)$	$4_{3}+4_{2}$	C
$(5,8,3)$	$(1,4,3)+(4,4,0)$	$4_{3}+3_{1}+1_{0}$	A
	$(2,4,2)+(3,4,1)$	$1_{3}+5_{2}+2_{1}$	B
$(6,8,2)$	$(2,4,2)+(4,4,0)$	$4_{2}+2_{1}+2_{0}$	A
	$(3,4,1)+(3,4,1)$	$2_{2}+6_{1}$	B
$(7,8,1)$	$(3,4,1)+(4,4,0)$	$5_{1}+3_{0}$	

$N=5$ " oxidizes" to $N=8(N=5 \rightarrow N=8)$
for minimal length-2 and 3 multiplets.
Manifestly \bar{N}-extended susy lagrangian $\mathcal{L}_{\bar{N}}$:

$$
\mathcal{L}_{\bar{N}}=Q_{1} \cdots Q_{\bar{N}} F_{\bar{N}}
$$

In mass-dimension, $\left[\mathcal{L}_{\bar{N}}\right]=2,\left[F_{\bar{N}}\right]=2-\frac{\bar{N}}{2}$.
N-extended supersymmetric action ($N>\bar{N}$) if $N-\bar{N}$ constraints, $j=\bar{N}+1, \cdots, N$:

$$
Q_{j} \mathcal{L}_{\bar{N}}=\partial_{t} R_{j, \bar{N}}
$$

with

$$
\left[R_{j, \bar{N}}\right]=\frac{3}{2}
$$

$N=4$ invariant action: unconstrained prepotential F.
$N=5$ and beyond: Constrained prepotential F. SO FAR: $N=5$ invariance $\rightarrow N=8$ invariance.
The prepotential F induces a σ-model.

Example: the $N=5\left((2,8,6)_{A}\right.$ or $\left.(2,8,6)_{B}\right)$ action implies the $N=8(2,8,6)$ action.

Let $F(x, y)$ be the prepotential and $\Phi=\partial_{x}^{2} F$. The $N=5$ constraint is

$$
\partial_{x}^{2} \Phi+\partial_{y}^{2} \Phi=0
$$

The $N=5(N=8)$ invariant lagrangian is

$$
\begin{aligned}
\mathcal{L}= & \Phi\left(\dot{x}^{2}+\dot{y}^{2}-\psi_{0} \dot{\psi}_{0}-\psi_{i} \dot{\psi}_{i}-\lambda_{0} \dot{\lambda}_{0}-\lambda_{i} \dot{\lambda}_{i}+g_{i} g_{i}+f_{i} f_{i}\right)+ \\
& +\Phi_{x}\left[\dot{y}\left(\psi_{0} \lambda_{0}-\psi_{i} \lambda_{i}\right)-g_{i}\left(\psi_{i} \psi_{0}+\lambda_{i} \lambda_{0}\right)+f_{i}\left(\psi_{i} \lambda_{0}-\lambda_{i} \psi_{0}\right)+\right. \\
& \left.\epsilon_{i j k}\left(f_{i} \lambda_{j} \psi_{k}+\frac{1}{2} g_{i}\left(\lambda_{j} \lambda_{k}-\psi_{j} \psi_{k}\right)\right)\right]+ \\
& -\Phi_{y}\left[\tilde{x}\left(\psi_{0} \lambda_{0}-\psi_{i} \lambda_{i}\right)+f_{i}\left(\psi_{i} \psi_{0}+\lambda_{i} \lambda_{0}\right)+g_{i}\left(\psi_{i} \lambda_{0}-\lambda_{i} \psi_{0}\right)-\right. \\
& \left.-\epsilon_{i j k}\left(g_{i} \psi_{j} \lambda_{k}-\frac{1}{2} f_{i}\left(\lambda_{j} \lambda_{k}-\psi_{j} \psi_{k}\right)\right)\right]+ \\
& +\Phi_{x x}\left[\frac{1}{6} \epsilon_{i j k}\left(\psi_{i} \psi_{j} \psi_{k}-3 \lambda_{i} \lambda_{j} \psi_{k}\right) \psi_{0}\right]+ \\
& +\Phi_{y y}\left[\frac{1}{6} \epsilon_{i j k}\left(\lambda_{i} \lambda_{j} \lambda_{k}-3 \psi_{i} \psi_{j} \lambda_{k}\right) \lambda_{0}\right]- \\
& -\Phi_{x y}\left[\frac{1}{6} \epsilon_{i j k}\left(\psi_{i} \psi_{j} \psi_{k} \lambda_{0}+\lambda_{i} \lambda_{j} \lambda_{k} \psi_{0}+3 \psi_{i} \lambda_{j} \lambda_{k} \lambda_{0}+3 \lambda_{i} \psi_{j} \psi_{k} \psi_{0}\right)\right] .
\end{aligned}
$$

$\Phi(x, y)$ is a conformal factor (the induced metric on the $2 D$ target is conformally flat).

Minimal representations:

1) "root" multiplets (n, n) induced by Clifford irreps

$$
\begin{gathered}
Q_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\widetilde{\sigma}_{i} \cdot H & 0
\end{array}\right) \\
\Gamma_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\tilde{\sigma}_{i} & 0
\end{array}\right) \quad, \quad\left\{\Gamma_{i}, \Gamma_{j}\right\}=2 \delta_{i j}
\end{gathered}
$$

2) higher-length multiplets induced by a dressing:

$$
Q_{i} \mapsto \widehat{Q}_{i}=D Q_{i} D^{-1}
$$

realized by a diagonal dressing matrix D.
Corollary: the total number of bosonic (fermionic) fields is given by

$$
\begin{aligned}
N & =8 l+m \\
n & =2^{4 l} G(m)
\end{aligned}
$$

where $l=0,1,2, \ldots$ and $m=1,2,3,4,5,6,7,8$. $G(m)$ is the Radon-Hurwitz function

m	1	2	3	4	5	6	7	8
$G(m)$	1	2	4	4	8	8	8	8

The non-minimal representations for $N \geq 4$ (reducible but indecomposable) are obtained from the "enveloping" representations
$\mathbf{1}, \quad Q_{i} \mathbf{1}, \quad Q_{i} Q_{j} \mathbf{1}, \quad Q_{i} Q_{j} Q_{k} \mathbf{1}, \quad \ldots$.

The field-content at mass-dimension $\frac{k}{2}$ is given by the Newton binomial.

Examples:
$N=4:(1,4,6,4,1)$.
$N=5:(1,5,10,10,5,1)$

The enveloping representations can be dressed:
$(1,5,10,10,5,1) \rightarrow(0,5,11,10,5,1)$.

The Schur Iemma can be extended to minimal supermultiplet
($0,1,3$ matrices τ_{j} commuting with the all the「's closing 1, u(1),su(2) groups)
One has to check the compatibility with the dressing $D\left(\left[D, \tau_{j}\right]=0\right)$.

Example: Schur property of the $N=5$ supermultiplets:

fields cont.	$N=4$ decomp.	ψ_{g} connectivities	labels	group
$(8,8)$	$(4,4)+(4,4)$	8_{0}		$s u(2)$
$(1,8,7)$	$(0,4,4)+(1,4,3)$	$3_{5}+5_{4}$		-
$(2,8,6)$	$(0,4,4)+(2,4,2)$	$2_{5}+2_{4}+4_{3}$	A	$u(1)$
	$(1,4,3)+(1,4,3)$	$6_{4}+2_{3}$	B	-
$(3,8,5)$	$(0,4,4)+(3,8,5)$	$1_{5}+3_{4}+4_{2}$	A	-
	$(1,4,3)+(2,4,2)$	$2_{4}+5_{3}+1_{2}$	B	-
$(4,8,4)$	$(0,4,4)+(4,4,0)$	$4_{4}+4_{1}$	A	$s u(2)$
	$(1,4,3)+(3,4,1)$	$1_{4}+3_{3}+3_{2}+1_{1}$	B	-
	$(2,4,2)+(2,4,2)$	$4_{3}+4_{2}$	C	$u(1)$
$(5,8,3)$	$(1,4,3)+(4,4,0)$	$4_{3}+3_{1}+1_{0}$	A	-
	$(2,4,2)+(3,4,1)$	$1_{3}+5_{2}+2_{1}$	B	-
$(6,8,2)$	$(2,4,2)+(4,4,0)$	$4_{2}+2_{1}+2_{0}$	A	$u(1)$
$(7,8,1)$	$(3,4,1)+(3,4,1)$	$2_{2}+6_{1}$	-	
$(1,5,7,3)$	$(3,4,1)+(4,4,0)$	$5_{1}+3_{0}$		-
$(1,6,7,2)$	$(1,4,3)+(0,1,4,3)+(0,2,4,2)$	5_{4}	$1_{5}+5_{4}$	
$(1,7,7,1)$	$(1,4,3)+(0,3,4,1)$	$2_{5}+5_{4}$	-	
$(2,6,6,2)$	$(2,4,2)+(0,2,4,2)$	$2_{4}+4_{3}$		-
$(2,7,6,1)$	$(2,4,2)+(0,3,4,1)$	$1_{5}+2_{4}+4_{3}$		$u(1)$
$(3,7,5,1)$	$(3,4,1)+(0,3,4,1)$	$3_{4}+4_{2}$		-

Comment: for the $(8,8)$ root multiplet,
$N=5$ generators are $s u(2)$-invariant.
$N=6$ generators are $u(1)$-invariant.

No invariance for $N=7,8$ generators.

Pre-Hopf map (bosonic):
for $k=1,2,4,8$

$$
p: \mathbf{R}^{2 k} \rightarrow \mathbf{R}^{k+1}
$$

It is a bilinear map

$$
x_{\mu}=u^{T} \Gamma_{\mu} u
$$

The norm is preserved by the mapping.
Therefore the restriction r

$$
r: \mathbf{R}^{2 k} \rightarrow \mathbf{S}^{2 k-1}
$$

induces the Hopf map h :

$$
h: \mathbf{S}^{2 k-1} \rightarrow \mathbf{S}^{k}
$$

Comment: we have 4 spaces $(I, I I, I I I, I V)$ and their mutual maps.

The spheres can be parametrized by the stereographic projection.

1st Hopf map
$\left(I=\mathbf{R}^{4}, I I=\mathbf{R}^{3}, I I I=\mathbf{S}^{3}, I V=\mathbf{S}^{2}\right)$.
2nd Hopf map
$\left(I=\mathbf{R}^{8}, I I=\mathbf{R}^{5}, I I I=\mathbf{S}^{7}, I V=\mathbf{S}^{4}\right)$.
3 rd Hopf map
$\left(I=\mathbf{R}^{16}, I I=\mathbf{R}^{9}, I I I=\mathbf{S}^{15}, I V=\mathbf{S}^{8}\right)$.
Supersymmetric extensions. Consider a root multiplet in I :

1st Hopf map
$N=3,4$ and $(4,4)$.
2nd Hopf map
$N=5,6,7,8$ and $(8,8)$.
3rd Hopf map
$N=9$ and $(16,16)$.
Induced supermultiplets in $I I, I I I, I V$.

1st Hopf map:
$N=4(4,4)$ in I is $U(1)$-invariant.

It induces $N=4$ multiplets:
a $U(1)$-invariant $(3,4,1)$ linear multiplet in $I I$.
a NONLINEAR $(3,4,1)$ in $I I I$.
a NONLINEAR $(2,4,2)$ in $I V$.

The supersymmetric extension of the 1 st Hopf map is the mapping

$$
(3,4,1)_{N L} \rightarrow(2,4,2)_{N L}
$$

It is a nonlinear dressing.

The nonlinearity in $I I I$ and $I V$ is mild: susy transforms with at most bilinear fields.

Fixing R, the radius of the spheres, in the contraction limit $R \rightarrow \infty$ we recover the linear $(3,4,1)$ and $(2,4,2) N=4$ multiplets.
$N=41 D$ sigma-models associated to the first Hopf map.
$S_{I}, S_{I I}, S_{I I I}, S_{I V}$ (in $I, I I, I I I, I V$) depending on UNCONSTRAINED prepotentials F.

In $I F$ is function of 4 target coordinates.

In $I I F$ is function of 3 target coordinates.

In III F is function of 3 target coordinates.

In $I V F$ is function of 2 target coordinates.

In $I, I I$ the induced metric $g_{i j}$ on the target space is conformally flat (the susy transforms are linear).

Due to the nonlinearity of the susy transformations, in III, IV the induced metric possesses a non-trivial curvature even for a quadratic prepotential.

Comment: we have maps mutually relating the 4 sigma-model actions.

Example. In $I V\left((2,4,2)_{N L}\right)$, parametrized by the target coordinates z_{1}, z_{2}, if we set the prepotential F to be function of $\rho=\sqrt{z_{1}^{2}+z_{2}{ }^{2}}$, we obtain that for a quadratic prepotential $(F(\rho)=$ $C \rho^{2}$), the curvature scalar R depends on ρ :

$$
R(\rho)=\frac{-44+\rho^{2}}{C\left(\rho^{2}+1\right)^{2}\left(\rho^{2}-8\right)^{2}}
$$

($R=-2$ at the origin requires $C=\frac{11}{32}$).

An inverse problem can be formulated: find a prepotential which reproduces a given target metric. As an example, the UNIFORMIZING PREPOTENTIAL (the curvature is constant everywhere).

At least locally we can compute a uniformizing prepotential by Taylor expansion. Example. $F=C\left(\rho^{2}+k \rho^{4}\right)$ gives a vanishing 1st, 2nd, 3rd derivative of R at the origin for

$$
\begin{aligned}
C & \approx 51.27994 \\
k & \approx-1.97997
\end{aligned}
$$

Supersymmetric extension of the $2 n d$ Hopf map. The pre-Hopf supersymmetrization $I \rightarrow I I$.

In I, several possibilities:
a) $N=8(8,8)$,
b) $N=6(8,8)$ with $U(1)$-invariance,
c) $N=5(8,8)$ with $S U(2)$ invariance,
d) $(8,8)$ with $N=4+B R S T$ and $S U(2)$-invariance.
a) induces in $I I I$ a HUGE linear multiplet with 128 bosonic and 128 fields.
c) induces in $I I I$ the linear multiplet ($5,11,10,5,1$), whose fields are bilinear composites of the fields in I and $S U(2)$-invariant.

What about the c) invariant action in $I I$? It admits a manifest $N=4 S U(2)$-invariant lagrangian

$$
L=Q_{1} Q_{2} Q_{3} Q_{4} F
$$

$N=5$ requires a Q_{5} constraint on F :

$$
Q_{5} L=\partial_{t} R
$$

In this case the metric of the $5 D$ target is conformally flat. The conformal factor Φ satisfies the Laplace equation $\nabla \Phi=0$ when expressed in terms of the 8 target coordinates of I.

Comment: for $\nabla F=0$ the action is both $N=8-$ invariant and $S U(2)$-invariant! (remember $N=$ $5 \rightarrow N=8$) .

The action contains only the fields of the $N=4$ $(5,8,3)$ non-minimal multiplet associated to the manifest 4 supersymmetries.

If F is chosen to depend only on

$$
\rho=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}}
$$

the action is $S O(5)$-invariant.
$N=4$ supersymmetric mechanics with Yang monopole (Krivonos-Neressian-FT, in preparation).

Comment: $N=4$ invariance, $S U(2)$-invariance and $S O$ (5)-invariance ($N=5$ is NOT imposed).

The simplest choice of prepotential is quadratic in the fields of I (an $(8,8)$ root-multiplet decomposed, for $N=4$, in two independent $N=4$ $(4,4)$ multiplets). The corresponding action has free constant kinetic term.

Grateful for Your kind attention.

This is the end.

